Course Specifications

Programme(s) on which the course is given

Major or Minor element of programmes

Department offering the programme

Department offering the course

Academic year / Level

Senior (4)

Date of specification approval 2012

A- Basic Information

Title: Radiation physics Code: 456

Credit Hours: 3 hr Lecture: 3h

Tutorial: 00 Practicals:00 Total: 3h

B- Professional Information

1 - Overall Aims of Course

- * To introduce the classification of radiation with concentration on the origin, type and characteristics of ionizing radiations
- * To provide topics on constituents of atomic nucleus, binding energy, stable and radioactive isotopes, decay modes, energies of emitted radiation and radiation protection
- *To present topics on radiation interaction with matter, calculation of energy loss in medium, methods of radiation detection, radioactivity determination in natural samples and radioactive dating.
- *To study units of exposure, dose and dose equivalent
- * To study the biological effects of ionizing radiations and radiation hazard to human (including hazard from radon isotopes
- * To introduce some peaceful applications of nuclear technology including the uses in medicine, agriculture and industry.
- * To develop problem solving skills covering topics of the course.

2 – Intended Learning Outcomes of Course (ILOs)

a Knowledge and Understanding:

The student will has ability for

- a1- identification of natural and artificial ionizing radiations including cosmic-ray particles.
- a2- Brief review on atomic nucleus, nuclear structure, decay modes radiation interaction and detection a3- use of radiation methods in determination of radioactivity in natural samples, radon measurements in houses, dating and the important needs of nuclear technology in various fields of life.

b Intellectual Skills

The student will be able to:

- **b1-** solve problems covering the materials of the course.
 - **b2-** convincing students about the important needs of the peaceful applications of nuclear technology in our life.

c Professional and Practical Skills

- c1- To gain detailed information about the need and the hazard of ionizing radiation (either natural or artificial).
- c2-To gain experience dealing with methods of radiation detection, radiation-shield build up, dating measurements and radiation dose evaluation. c3-understanding the different mathematical
- treatments covered in some parts of the course. Special those related to the calculations the radiation
- Special those related to the calculations the radiation doses to human.

d General and Transferable Skills

- d1-improving communication through sheets of problem-solving.
- d2-ability of giving 10 minutes presentation on topic

of the course.

3- Contents

5- Contents	**	T .	TD 4
Topic	N	Lectu	Tutor
	0.	re	ial/Pr
	of		actica
	h		l
	0		
	ur		
	S		
Sources of radiation	3	2	T
Constituents of atomic	6	4	T
nucleus, binding energy,			
decay modes and energy			
calculation			
Radiation iteraction	8	6	T
mechanisms, radiation			
detection and radiation			
shield build up.			
Natural radioactive series,	3	2	T
radioactivity in natural			
samples and dating			
measurement			
Units of radiation dose and	3	2	T
biological effects of radiation			
Origin of radioactive radon	3	2	T
isotopes and methods of			
measurements			
Peaceful uses of nuclear	8	6	T
technology			
		1	1

- 4- Teaching and Learning Methods
 - 4.1-lectures
 - 4.2- disscutions
- **5- Student Assessment Methods**

- 5.1 midterm written exam to assess understanding about the covered first part of the course
- 5.2-semester activity. to develop communication skills..
- 5.3 final written exam to assess the overall gain from the course materials
- 5.4 homework sheets to assess solving problems skills and time constrain

Assessment Schedule

Assessment 1 sheet exam Week 8&16 (mid

&final term).

Assessment 2 oral exams Week every

week

Assessment 3 written exam Week 15

Weighting of Assessments

Mid-Term Examination 20 %

Final-term Examination 60 % Oral Examination. 10 %

Semester Work 10 %

Total 100 %

6- List of References

- **6.1- Course Notes**
- 6.2-experimental physics ,department of physics,2005.
- 6.3- Recommended Books
- 6.4- Periodicals, Web Sites, ... etc

www.sciencedirect.com.

Searching for radiation physics sites

Searching for nuclear physics sites

7- Facilities Required for Teaching and Learning Overhead projector

Course Coordinator: Prof.Dr.Abdel Azim Hussein

Head of Department: Prof.Dr. Sana Maize

Date: / /